

Estimates of Antimicrobial Abuse in Livestock

MARGARET MELLON

CHARLES BENBROOK

KAREN LUTZ BENBROOK

Union of Concerned Scientists January 2001

© 2001 Union of Concerned Scientists

All rights reserved

Margaret Mellon is the director of the UCS Food and Environment Program. **Charles Benbrook** is an agricultural technology and food safety expert and runs Benbrook Consulting Services in Sandpoint, Idaho. **Karen Lutz Benbrook** manages databases on the impacts of agricultural technology and several websites through her business, Ecologic, Inc., also in Sandpoint, Idaho.

The Union of Concerned Scientists is a partnership of citizens and scientists working to preserve our health, protect our safety, and enhance our quality of life. Since 1969, we've used rigorous scientific analysis, innovative policy development, and tenacious citizen advocacy to advance practical solutions for the environment.

The UCS Food and Environment Program advocates the transition to a sustainable food system that provides safe, high quality, affordable food with minimum adverse impacts on the environment. The program educates and empowers citizens and scientists to shape the decisions about the future of their food system. Its issue agenda includes regulation of biotechnology foods and crops, reduction in the use of antibiotics in agriculture, and promotion of a public research agenda supporting sustainable agriculture.

More information about UCS and the Food and Environment Program is available at the UCS site on the World Wide Web, at *www.ucsusa.org/food.*

The full text of this report is available on the UCS website (*www.ucsusa.org/publications*) or may be obtained from

UCS Publications Two Brattle Square Cambridge, MA 02238-9105

Or email pubs@ucsusa.org or call 617-547-5552.

Printed on recycled paper

Contents

Fiş	Figures	
Tables		vi
Acknowledgements		ix
Ex	Executive Summary	
1.	Antimicrobial Resistance	1
	The Ticking Time Bomb	1
	Time to Act	6
	Flying Blind	7
	The Purpose of This Study	8
	The Use of Usage Data	9
2.	Using Antimicrobials in Livestock	11
3.	How Little We Know	15
	Total Quantity of Antimicrobials Used	15
	Quantity of Antimicrobials Used in Human Medicine	16
	Agricultural Use of Antimicrobials	18
4.	Estimating Antimicrobial Use in Livestock	25
	Background on Methods	25
	Estimates of Nontherapeutic Antimicrobial Use in Beef and Veal Production	27
	Estimates of Nontherapeutic Antimicrobial Use in Swine Production	36

	Estimates of Nontherapeutic Antimicrobial Use	
	in Poultry Production	42
	Trends in Agricultural Antimicrobial Use from	
	the Mid-1980s to the Late 1990s	47
5	Antimicrobials as Pesticides	51
5.	Anthine oblais as restelets	51
6.	Antimicrobials Important to Human Medicine	53
7.	Comparing Estimates	57
	This Report's Estimates	57
	The Institute of Medicine's 1985 Estimates	57
	The Animal Health Institute's 2000 Estimates	57
	Comparison of UCS's Estimates for Medical	
	and Nontherapeutic Agricultural Use	58
	Comparison of UCS's Estimates with AHI's Estimates	58
8.	Conclusions and Recommendations	62
	Conclusions	62
	Recommendations	64
Bibliography		67
Aţ	ppendices	
	A. Antimicrobials Used in Livestock Production	79
	B. Estimated Nontherapeutic Antimicrobial	
	Use in Livestock	95
	C. Agricultural Use of Antimicrobials—	107
	impact on Treatment of Human Disease	10/

Figures

1.	Changes in Nontherapeutic Antimicrobial Use in Cattle, Swine, and Poultry from 1985 to the Late 1990s	48
2.	Changes in Nontherapeutic Use of Tetracyclines in Cattle, Swine, and Poultry from 1985 to the Late 1990s	48
3.	Comparison of Antimicrobials Used in Livestock and Human Medicine	58
4.	Percent of Antibiotics Used in the United States in 1998 as Reported by the Animal Health Institute 2000	59

Tables

1.	Uses of Antimicrobials	16
2.	Antimicrobials Used in Human Medicine	17
3.	Nontherapeutic Antimicrobial Use in Beef Cattle and Veal Calves	30
4.	Estimated Nontherapeutic Antimicrobial Use in Beef Calves	30
5.	Changes in Antimicrobial Use in Beef from 1985 to the Late 1990s	36
6.	Nontherapeutic Antimicrobial Use in Swine	40
7.	Estimated Nontherapeutic Antimicrobial Use in Swine Production—Starting Growth Stage	42
8.	Changes in Antimicrobial Use in Swine from 1985 to the Late 1990s	42
9.	Representative Antimicrobial/Coccidiostat Combinations Used for Poultry Production	44
10.	Nontherapeutic Antimicrobial Use in Poultry	45
11.	Estimated Nontherapeutic Antimicrobial Use in Poultry Production—Starting Growth Stage	46
12.	Changes in Antimicrobial Use in Poultry from 1985 to the Late 1990s	47
13.	Antibiotic Pesticide Use on Fruit Crops	52

14.	Nontherapeutic Antimicrobial Use in Livestock by Importance in Treating Human Diseases	54
15.	Human, Agricultural, and Companion Animal Antimicrobial Use	60
A-1.	Selected Antimicrobials Used in Beef Production	80
A-2.	Selected Antimicrobials Used in Swine Production	82
A-3.	Selected Antimicrobials Used in Poultry Production	86
A-4.	Representative Antimicrobial/Coccidiostat Combinations for Poultry Production	93
B-1.	Estimated Nontherapeutic Antimicrobial Use in Beef Production	96
B-2.	Estimated Nontherapeutic Antimicrobial Use in Swine Production	100
B-3.	Estimated Nontherapeutic Antimicrobial Use in Poultry Production	104
C-1.	Agricultural Use of Antimicrobials— Impact on Treatment of Human Disease	108

Acknowledgements

The authors are indebted to Christina Grecko of the Antibiotics Department at Sweden's National Veterinary Institute, who provided information on antimicrobial use and policy in Sweden and Europe and Dr. Abigail Salyers of the University of Illinois, Department of Microbiology, who provided guidance in the classification of antimicrobials. We also would like to thank Dr. Walter Arons, Menlo Park, California, for his assistance in the projection of common antimicrobial use patterns in the treatment of human disease. Of course, any errors of fact or judgment remaining in the manuscript are our responsibility.

The authors would also like to thank Steven Fondriest for helping to shepherd the text through multiple revisions, supplying and checking references, and keeping track of the evolution of the figures and tables. Anita Spiess did her usual splendid job editing the manuscript and oversaw the production of the book. Her careful and intelligent reading and thoughtful revisions contributed much to making the text clear and understandable. Pam Abhyankar helped dispel the mysteries of Excel.

We are grateful to the Joyce Foundation for its support of the project from its inception. Support from the following foundations helped see the project though to completion: the Helen Bader Foundation, Inc., C.S. Fund, The Nathan Cummings Foundation, The Educational Foundation of America, The David B. Gold Foundation, Richard & Rhoda Goldman Fund, Clarence E. Heller Charitable Foundation, and Wallace Genetic Foundation, Inc.

Executive Summary

Antimicrobial resistance is a public health problem of growing urgency. Although use of antimicrobials in humans is the largest contributor to the problem, use of antimicrobials in agriculture also plays a significant role. Mounting evidence is confirming the view, long held in the public health community, that antimicrobial use in animals can substantially reduce the efficacy of the human antimicrobial arsenal.

Now is the time to act to curb the overuse of antimicrobials in animals. But as public health officials and citizens turn to this task, data on quantities of antimicrobials used are not publicly available, even though these data are critical to designing an effective response to the problem.

This report attempts to fill in that gaping chasm by providing the first transparent estimate of the quantities of antimicrobials used in agriculture. We have devised a methodology for calculating antimicrobial use in agriculture from publicly available information including total herd size, approved drug lists, and dosages. The method is complex but sound, and the results are startling. We estimate that every year livestock producers in the United States use 24.6 million pounds of antimicrobials for nontherapeutic purposes. These estimates are the first available to the public based on a clear methodology. We have been careful in making these estimates, always choosing conservative assumptions. We hope that any critics of this study who claim the estimates are incorrect will provide the documented data needed to refine them.

Conclusions

The results of our study indicate the following:

 Tetracycline, penicillin, erythromycin, and other antimicrobials that are important in human use are used extensively in the absence of disease for nontherapeutic purposes in today's livestock production. Cattle, swine, and poultry are routinely given antimicrobials throughout much of their lives. Many of the antimicrobials given to livestock are important in human medicine.

• The overall quantity of antimicrobials used in agriculture is enormous.

Many consumers will be surprised to find that tens of millions of pounds of antimicrobials are used in livestock systems. We estimate that every year livestock producers in the United States use 24.6 million pounds of antimicrobials in the absence of disease for nontherapeutic purposes: approximately 10.3 million pounds in hogs, 10.5 million pounds in poultry, and 3.7 million pounds in cattle. The tonnage would be even higher if antimicrobials used therapeutically for animals were included.

• Previous estimates may be drastic underestimates of total animal use of antimicrobials.

A study recently released by the Animal Health Institute (AHI) may have severely underestimated animal use of antimicrobials. Our estimate of 24.6 million pounds for animal use is almost 40 percent higher than industry's figure of 17.8 million pounds—and ours includes only nontherapeutic usage in the three major livestock sectors. AHI's covers all uses—therapeutic and nontherapeutic—in all animals, not just cattle, swine, and poultry.

Approximately 13.5 million pounds of antimicrobials prohibited in the European Union are used in agriculture for nontherapeutic purposes every year by US livestock producers.

The European Union has prohibited nontherapeutic agricultural use of antimicrobials that are important in human medicine, such as penicillins, tetracyclines, and streptogramins. Total US agricultural use of these banned antimicrobials is enormous.

 Driven primarily by increased use in poultry, overall use of antimicrobials for nontherapeutic purposes appears to have risen by about 50 percent since 1985.

According to our estimates, total nontherapeutic antimicrobial use in animals has increased from 16.1 million pounds in the mid-1980s to 24.6 million pounds today.

In poultry, nontherapeutic use since the 1980s has increased by over 8 million pounds (from 2 million to 10.5 million pounds), a dramatic 307 percent increase on a per-bird basis. Growth in the size of the industry accounted for about twofifths of the overall increase.

In swine, nontherapeutic use has declined slightly (from 10.9 to 10.3 million pounds), although there is growing reliance on tetracycline-based products.

• The quantities of antimicrobials used in the absence of disease for nontherapeutic purposes in livestock dwarf the amount of antimicrobials used in human medicine.

Our estimates of 24.6 million pounds in animal agriculture and 3 million pounds in human medicine suggests that 8 times more antimicrobials are used for nontherapeutic purposes in the three major livestock sectors than in human medicine. By contrast, industry's estimates suggest that two pounds of antimicrobials are used in treating human disease for every pound used in livestock.

Livestock use accounts for the lion's share of the total quantity of antimicrobials used in the United States. Our ballpark estimates suggest that nontherapeutic livestock use accounts for 70 percent of total antimicrobial use. When all agricultural uses are considered, the share could be as high as 84 percent. This estimate is far higher than the 40 percent figure commonly given in the literature for the agricultural share of antimicrobial use.

• The availability of data on antimicrobial use in fruit and vegetable production demonstrates that credible usage information can be obtained without unduly burdening either agricultural producers or the pharmaceutical industry.

This report presents several years of data on the quantity of antimicrobials used as crop pesticides. These easily accessible data were compiled by the US Department of Agriculture, which uses producer surveys to gather information on pesticide use each year.

Recommendations

 The Food and Drug Administration (FDA) should establish a system to compel companies that sell antimicrobials for use in food animals or that mix them in animal feed or water to provide an annual report on the quantity of antimicrobials sold. The information should be broken out by species and by antimicrobial. It should include the class of antimicrobial, indication, dosage, delivery system, and treatment period.

- 2. The US Department of Agriculture (USDA) should improve the completeness and accuracy of its periodic surveys of antimicrobial use in livestock production.
- 3. The FDA, USDA, and Centers for Disease Control and Prevention (CDC) should speed up implementation of Priority Action 5 of *A Public Health Action Plan to Combat Antimicrobial Resistance*, the US government's recently published action plan on antimicrobial resistance, which calls for the establishment of a monitoring system and the assessment of ways to collect and protect the confidentiality of usage data.